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Abstract
A multianalyte algorithmic assay (MAAA) identifies circulating neuroendocrine tumor (NET)

transcripts (nZ51) with a sensitivity/specificity of 98%/97%. We evaluated whether blood

measurements correlated with tumor tissue transcript analysis. The latter were segregated into

gene clusters (GC) that defined clinical ‘hallmarks’ of neoplasia. A MAAA/cluster integrated

algorithm (CIA) was developed as a predictive activity index to define tumor behavior and

outcome. We evaluated three groups. Group 1: publically available NET transcriptome databases

(nZ15; GeneProfiler). Group 2: prospectively collected tumors and matched blood samples

(nZ22; qRT-PCR). Group 3: prospective clinical blood samples, nZ159: stable disease (SD): nZ111

and progressive disease (PD): nZ48. Regulatory network analysis, linear modeling, principal

component analysis (PCA), and receiver operating characteristic analyses were used to delineate

neoplasia ‘hallmarks’ and assess GC predictive utility. Our results demonstrated: group 1: NET

transcriptomes identified (92%) genes elevated. Group 2: 98% genes elevated by qPCR (fold

change O2, P!0.05). Correlation analysis of matched blood/tumor was highly significant

(R2Z0.7, P!0.0001), and 58% of genes defined nine omic clusters (SSTRome, proliferome,

signalome, metabolome, secretome, epigenome, plurome, and apoptome). Group 3: six clusters

(SSTRome, proliferome, metabolome, secretome, epigenome, and plurome) differentiated SD

fromPD(areaunder thecurve (AUC)Z0.81). Integrationwithblood-algorithmamplifiedtheAUC

to 0.92G0.02 for differentiating PD and SD. The CIA defined a significantly lower SD score (34.1G

2.6%) than in PD (84G2.8%, P!0.0001). In conclusion, circulating transcripts measurements

reflect NET tissue values. Integration of biologically relevant GC differentiate SD from PD.

Combination of GC data with the blood-algorithm predicted disease status in O92%. Blood

transcript measurement predicts NET activity.
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Introduction
Biomarker assessment of gastroenteropancreatic neuro-

endocrine tumor (GEP–NET) disease has been difficult

since the default is provided by a monoanalyte measure-

ment, chromogranin A, which has well-described
limitations (Lawrence et al. 2011, Marotta et al. 2012).

The current scientific paradigm for biomarker develop-

ment has focused on the advancement of multianalyte

technologies (Engels et al. 2013, Grimm et al. 2013).

http://erc.endocrinology-journals.org
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This strategy facilitates the coupling of integral aspects of

disease represented by individual markers into a math-

ematical algorithm that provides multidimensional

clinical and pathobiological information inaccessible in

a monoanalyte approach (Modlin et al. 2014a,b).

In seeking to advance beyond a monoanalyte strategy,

we developed a genetic biomarker assay in blood for GEP–

NETs based upon qRT-PCR measurement of 51 circulating

NET marker genes. Normalized gene expression is classi-

fied using four different learning algorithms (support

vector machine, linear discrimination analysis, K-Nearest

Neighbor, and Naive Bayes (Bayes)) and a score is assigned

based on a majority vote (Modlin et al. 2013a). Output is

expressed as a 0–8 score, where a score O2 is classified as a

GEP–NET (Modlin et al. 2014a,b). The PCR test (NET score)

is standardized and reproducible (inter- and intra-assay

coefficient of variation (CV) !2%), and not affected by

age, gender, ethnicity, fasting, or PPI medication (Modlin

et al. 2014c). The score is robust (inter- and intra-assay CV

!2%; Modlin et al. 2014c) with a high level of sensitivity

and specificity (98 and 97% respectively). This multi-

analyte algorithmic assay (MAAA) strategy is significantly

more accurate as a circulating biomarker than other

currently utilized monoanalytes (Z-statistic 4.85–5.9,

P!0.0001 vs e.g. chromogranin A and pancreastatin) for

NET detection (Modlin et al. 2013a, 2014a,b,c,d).

Our current goal was to advance from a linear

interpretation of disease activity based upon quantifi-

cation of gene expression (0–8 score) to an amplified

algorithm that incorporated gene clusters (GC) represen-

tative of NET neoplasia. This cluster integrated algorithm

(CIA) would thus comprise both the diagnostic blood

transcripts and include the mathematical expression

levels of specific GC that delineate a variety of neoplastic

biological processes, elegiacally referred to as the ‘hall-

marks of cancer’ (Hanahan & Weinberg 2000, 2011).

The 51 marker gene score includes a series of genes

that are associated with neoplastic behavior. Captured by

gene co-expression networks from tissue and blood

transcriptome databases (Modlin et al. 2013a, Kidd et al.

2014), these include biologically relevant transcripts

involved in NET proliferation, signaling and secretion

(Wulbrand et al. 1998, Kidd et al. 2006, Karhoff et al. 2007,

Drozdov et al. 2009, Cui et al. 2010, Muscarella et al. 2011)

as well as genes reported to have a defined association with

tumor initiation and metastasis (Hogarty et al. 2008, Kim

et al. 2008, Miretti et al. 2008, Naik et al. 2009, Bralten et al.

2010). As such, they overall provide ‘omic’ information.

The NET score provides a robust circulating ‘finger-

print’ for GEP–NET detection using a linear score (0–8).
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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It has not, however, been defined whether measurements

of circulating transcripts functions as a multianalyte

biomarker that correlates with tumor tissue expression

levels. We postulated that if this was demonstrable, then

the blood derived NET score could be used to define the

real-time biological and clinically relevant state of a tumor.

Thus, repetitive ‘liquid biopsies’ (blood sampling) would

provide direct information about the tumor, its pathophy-

siology and its response to intervention. Therefore, a

specific aim of the investigation was to define whether

blood transcript levels directly correlated with tumor tissue

levels collected at the same time point (i.e. at surgery).

Hanahan & Weinberg (2000, 2011) have elegantly

derived a synopsis of the complexity of cancer pathobiology

by delineating a sequence of ‘hallmarks’ pathognomonic of

neoplasia. These descriptors have been confirmed using

systems biology approaches (Wang et al. 2014) and ‘cancer

hallmark networks’ can be quantified and computationally

modeled to predict cancer evolutionary paths as well as

clinical phenotypes. We utilized our pipeline to develop a

systems biology approach to identify candidate NET bio-

marker genes. We hypothesized such genes would be

‘neoplasia-relevant’ and could be categorized using a ‘hall-

mark’ approach as a template. A mathematical algorithm

(NETest) could then be derived that would capture the

‘biology’ of NET neoplasia. By inference, we would predict

that the identification of such hallmarks would allow for

extrapolation to provide clinically useful information. The

corollary is that effective treatment protocols could be

defined by their ability to modify transcript clusters or

conversely ineffective agents would fail to perturb the cluster

signatures. To this end, we examined whether the 51 marker

gene panel could be mathematically reconfigured to include

specific neoplastic defining ‘hallmarks’ or ‘omes’. Our

concept was to evaluate NET selectivity, determine whether

tissue levels of these hallmarks were increased compared to

non-neoplastic tissue and confirm that these GC could be not

only measured in circulating blood samples but that they

correlated with tissue expression levels. Finally, we sought to

identify whether hallmark expression differed between two

broad clinical groups currently characterized in clinical

vernacular as stable disease (SD) or progressive disease (PD).

Identification of biologically relevant ‘omes’ enabled us to

expand on the original algorithm to include biologically-

relevant gene expression data.
Methods

Publically available NET microarrays (nZ2 sets: described

below; Kidd et al. 2014) were assessed (group 1). These
Published by Bioscientifica Ltd.
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included sample set 1 which comprised nine NET

transcriptomes (obtained from the small intestine) and

normal small intestinal mucosa (Affymetrix U133A chips,

nZ9 tumors and nZ3 normal mucosa, ArrayExpress:

E-GEOD-6272) (Kidd et al. 2006) and sample set 2 which

comprised six NET transcriptomes (Affymetrix U133 Plus2

chips, nZ3 primary midgut NETs and nZ6 normal

mucosa, ArrayExpress: E-TABM-389) (Leja et al. 2009).

Other samples (groups 2 and 3) were collected and

analyzed according to a standard IRB protocol (Yale

University, 6/17/2013) in accordance with the World

Medical Association Declaration of Helsinki (Modlin et al.

2013a). Group 2 included 22 pathologically verified samples

that were provided by Yale University (Surgical Pathology

Tissue Databank per standard IRB protocol: Yale University,

6/17/2014) as well as normal mucosa (nZ8). The grade stage

as well as previous treatment are included in Table 1.
Table 1 Demographics of NETs (sample sets one to three; tissue sa

Sample set Sample no. Gender Age Site

Normal N1 M 46 Small intestined N
Normal N2 F 62 Small intestined N
Normal N3 F 48 Colond N
Normal N4 M 65 Colond N
Normal N5 F 89 Colond N
Normal N6 M 41 Colond N
Normal N7 F 66 Rectumd N
Normal N8 M 66 Rectumd N
Tumor T1 M 70 Stomache P
Tumor T2 M 80 Pancreas P
Tumor T3 F 60 Pancreas P
Tumor T4 M 52 Pancreas M
Tumor T5 F 64 Pancrease M
Tumor T6 F 75 Small Intestine M
Tumor T7 F 68 Small Intestine P
Tumor T8 F 61 Small Intestinee M
Tumor T9 M 67 Small Intestinee M
Tumor T10 M 69 Small Intestine M
Tumor T11 F 62 Small Intestinee P
Tumor T12 M 75 Small Intestine P
Tumor T13 F 61 Small Intestinee P
Tumor T14 F 59 Small Intestine P
Tumor T15 M 42 Small Intestinee M
Tumor T16 M 45 Appendixe P
Tumor T17 M 50 Rectum P
Tumor T18 F 47 Rectum P
Tumor T19 F 51 Rectum M
Tumor T20 M 70 Rectum M
Tumor T21 M 48 Rectume M
Tumor T22 M 66 Rectum P

F, female; M, male; N, no; Y, yes; CCa, colon cancer; CD, Crohn’s disease; RCa, re
aGraded per ENETs criteria (Rindi et al. 2006, 2007).
bStaged per ENETs criteria (Rindi et al. 2006, 2007).
cTreatment included somatostatin analogs (SSA), interferon (IFN), or chemothe
dMicroscopically and macroscopically normal mucosa. Samples were collect
verified as ‘normal’.
eIncluded matched blood samples.

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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Matched blood samples were also available in nine.

Group 3 included blood samples included in a training

set (nZ130 (previously described); Modlin et al. 2013a)

as well as samples from an independent set (nZ159:

clinically stable disease (SD) nZ111; PD nZ48). The

demographics of the 63 NETs in the training set were

mean age 56 years (range: 18–80) and gender distribution

(M:F) of 33:30. The 159 NETs in the independent set were

mean age 57.1 years (range: 27–83), gender distribution

(M:F) of 86:73. Tumor site, grade, stage, and treatment are

included in Table 2. The sets were well-matched, except

the independent set had more pancreatic NETs (c2Z30,

P!0.00001). Each group included both ‘SD’ and ‘PD’. SD

was assessed as per standard clinical criteria and RECIST

criteria. The PD group (disease progression) was based on

review of changes in radiological and nuclear medicine

images at tumor board using the same criteria. PD was
mples)

Source Gradea Stageb Treatmentc

ormal tissue NA NA Surgery – CD
ormal tissue NA NA Surgery – CD
ormal tissue NA NA Surgery – UC
ormal tissue NA NA Surgery – CCa
ormal tissue NA NA Surgery – CCa
ormal tissue NA NA Surgery – CCa
ormal tissue NA NA Surgery – RCa
ormal tissue NA NA Surgery – RCa
rimary 2 II Surgery (treatment naı̈ve)
rimary 1 II Surgery (treatment naı̈ve)
rimary 1 I Surgery (treatment naı̈ve)
etastasis 2 IV Surgery (prior IFN, chemo)
etastasis 2 IV Surgery (prior chemo)
etastasis 2 IV Surgery (prior chemo)

rimary 1 II Surgery (treatment naı̈ve)
etastasis 2 IV Surgery (treatment naı̈ve)
etastasis 1 IV Surgery (prior SSA)
etastasis 1 IV Surgery (prior SSA)

rimary 1 II Surgery (treatment naı̈ve)
rimary 1 II Surgery (treatment naı̈ve)
rimary 1 II Surgery (treatment naı̈ve)
rimary 1 II Surgery (treatment naı̈ve)
etastasis 1 IV Surgery (treatment naı̈ve)

rimary 1 I Surgery (treatment naı̈ve)
rimary 1 II Surgery (treatment naı̈ve)
rimary 1 I Surgery (treatment naı̈ve)
etastasis 1 IV Surgery (treatment naı̈ve)
etastasis 1 IV Surgery (treatment naı̈ve)
etastasis 2 IV Surgery (prior SSA)

rimary 1 I Surgery (treatment naı̈ve)

ctal cancer; UC, ulcerative colitis; NA, not applicable.

rapy (chemo).
ed at surgery for the indicated diseases. All tissue was pathologically

Published by Bioscientifica Ltd.
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Table 2 Clinical characteristics of patients (test and

independent validation sets; blood samples)

Study set

Test set (nZ63)a,b

Independent set

(nZ159)a,c

Primary location
Lung 3 (5%) 5 (3%)d

Stomach 4 (6%) 6 (4%)d

Pancreas 3 (5%) 43 (27%)d

SI 39 (62%) 82 (52%)d

Appendix 8 (13%) 3 (2%)d

Colorectal 6 (9%) 7 (4%)d

CUP 0 (0%) 12 (8%)d

Gradee

G1 30 (48%) 87 (55%)
G2 18 (28%) 29 (18%)
G3 2 (3%) 5 (3%)
ND 13 (21%) 38 (24%)

Stagef

I 7 (11%) 11 (7%)
II 5 (8%) 16 (10%)
III 0 (0%) 0 (0%)
IV 46 (73%) 121 (76%)
ND 5 (8%) 11 (7%)

CUP, carcinoid of unknown primary; ND, no data available; SI, small
intestine. The grade and stage distribution was not significantly different
between the stable and progressive disease groups. The majority O95% of
patients were Caucasian.
aComparison of the two sets with the spectrum of disease included in the
Surveillance Epidemiology and End Results (SEER) database (GEP–NETs)
identified no significant differences indicating that the patient character-
istics provided a reasonable reflection of the clinical spectrum of NET
disease.
bThis included stable disease (nZ35) and progressive disease (nZ27).
cThis included stable disease (nZ111) and progressive disease (nZ48).
dPrimary location distribution was significantly different in the two sets
(c2Z30.02, P!0.0001). Both the grade and stage were similar (c2Z1.3–2.9,
PZ0.4–0.7).
eGEP–NETs grade based on Ki67 or mitotic index (ENETs guidelines (Rindi
et al. 2006, 2007)). BP grade based on WHO guidelines (Travis et al. 2004).
fStage based on ENETs guidelines (Rindi et al. 2006, 2007). Tumor disease was
identified in lymph nodes, mesentery, liver, lung, bone, and ovary (or any
combination thereof). Methodologies including octreoscan, computed
tomography (CT), magnetic resonance imaging (MRI), identification at
surgery, and identification at pathology, e.g. positive lymph nodes.
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defined as any increase in tumor burden (any individual

lesion), while SD was defined as no increase in tumor

burden. The grade and stage distribution was not

significantly different.

All individuals who provided blood were (6/2009–

3/2014) from the Yale School of Medicine, Smilow Cancer

Center outpatient clinics and provided informed consent.

Blood samples (5 ml) were collected in 9 mg K2EDTA tubes

(BD Vacutainer Venous Blood Collection Tubes, BD

Diagnostics, Franklin, NJ, USA). Aliquots of whole blood

were stored at K80 8C within 2 h of collection (samples

immediately stored on ice/4 8C after sampling) per

standard molecular diagnostics protocols for PCR-based

studies (Raza et al. 2012).
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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Group 1: transcriptome assessment

Geneexpression (foldchange)ofeach of thetargetgeneswas

examined in two publically available datasets, sample set 1

(Kidd et al. 2006) and sample set 2 (Leja et al. 2009).

Individual analyses were performed using the web-based

GeneProfiler tool (GeneProfiler, Bering Limited, http://

beringresearch.com/geneprofiler). Primary tumors were

compared with non-matched normal mucosal samples.

Sample set 1 consisted of 22 283 probes and 12 arrays,

while sample set 2 consisted of 54 675 probes and 12 arrays.

Probe sets that were unlikely to be reliable were eliminated

using detection of present/absent calls. Probes present in

O50% of samples were retained (McClintick & Edenberg

2006). Raw probe intensities were normalized using the

Robust Microarray Average approach (Irizarry et al. 2003).

Array outlier detection was performed in the array Quality

Metrics package (Kauffmann et al. 2009) using the

Kolmogorov–Smirnov statistic between each array’s distri-

bution and the distribution of the pooled data. To enhance

microarray annotation, probe identifiers (IDs) were mapped

to Entrez Gene IDs (accessed 7th April 2013; Maglott et al.

2011). In cases where multiple probes mapped to the same

Entrez ID, the average probe intensity was calculated. Probes

withoutanEntrez recordwere removed fromanalysis.Genes

that were consistently identified as differentially expressed

using multiple ranking algorithms (Boulesteix & Slawski

2009; fold change ranking, ordinary t-statistic, shrinkage

t-statistic, limma, significance analysis of microarrays) were

called significant and retained for further analysis. This

approach ensured that differential expression analysis was

i)unbiased and ii) consistentacross differentarray platforms.
Tissue RNA isolation and real-time PCR

RNAwasextracted (TRIzol, Invitrogen;Kidd etal. 2005,2014)

and real time RT-PCR analysis was performed using Assays-

on-Demand products and the ABI 7900 Sequence Detection

System according to the manufacturer’s suggestions (Kidd

et al. 2005, 2014). Cycling was performed under standard

conditions (TaqMan Universal PCR Master Mix Protocol)

and data normalized (using ALG9 and the DDCT method

(Microsoft Excel)) using small bowel mucosa as a control.

Samples were evaluated and scored using the MATLAB-

derived protocol for blood (Modlin et al. 2013a,b, 2014c).

As a comparison normal tissue samples (nZ8) were included.
Blood-based MAAA PCR test

We used a two-step manual technique protocol (RNA

isolation with cDNA production and qPCR). Transcripts
Published by Bioscientifica Ltd.
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(mRNA) were isolated from 1 ml EDTA-collected blood

samples using the mini blood kit (Qiagen). The RNA

quantity was 50 ml, the quality was O1.8 (A260:280 ratio);

analysis of the RNA pattern on electrophoresis (Agilent

Technologies, Santa Clara, CA, USA) RNA integrity number

(RIN) O5.0 (Fleige etal. 2006).The standardQiagen isolation

protocol (heme/gDNA contaminationnot detected)with no

modificationswas used. cDNA was produced from50 ml RNA

using a High Capacity Reverse Transcriptase Kit (Life

Technologies: cDNA production 2000–2500 ng/ml) and

stored at K80 8C. QPCR was performed (384-well plate,

HT-7900) with the cDNA (200 ng/ml) and 16 ml of reagents/

well (Universal Master Mix II with UNG, Life Technologies,

triplicate wells) (50 8C 2 min, 95 8C 10 min, then 95 8C 15 s,

60 8C, 60 s for 40 cycles) as described (Modlin et al. 2013a,

2014c). A NET score (0–8) was derived from the PCR data

using MATLAB (R2011a, Mathworks, Natick, MA, USA;

Modlin et al. 2013b); a value R2 is a positive tumor score

(Modlin et al. 2013a,b, 2014c). Quantification of gene

expression in the clusters (‘omes’) was undertaken by

summation of individual gene expression. For example,

the ‘SSTRome’ comprises the summated gene expression of

SSTR1, SSTR3, and SSTR5. Individual ‘omes’ that were

significantly different (P%0.002) between SD and PD and

were elevated in GEP–NET blood compared to control blood

were included inanactivityalgorithm.Six ‘omes’ (SSTRome,

proliferome, metabolome, secretome (II), epigenome, and

plurome) met this criterion and were summated. Non-

significant and therefore excluded ‘omes’ included secre-

tome (I), signalome, and apoptome. A cut-off of 80

(summated normalized gene expression of six ‘omes’)

based on receiver operating characteristic (ROC) analyses

was used to differentiate disease phenotypes (SD vs PD). The

original 0–8 score derived from the blood-based gene test

that was used for the diagnosis of NETs was then

reconfigured using the activity algorithm to generate a

CIA. The latter was utilized to generate a disease activity

range expressed as logarithmic basis of activity ranging from

0 to 100%. This was generated by weighting the original

score by whether it was ‘stable’ or ‘progressive’. Scores of 0–8

with ‘stable’ phenotype were converted to 0–44% (low

activity); those with ‘progressive’ phenotype ranged from

44 to 100% (high activity).
Statistical analysis

Sensitivity comparisons using c
2, non-parametric

measurements and ROC analysis were made between

the standard MAAA–PCR and NETest. Both Prism 6.0

for Windows (GraphPad Software, La Jolla, CA, USA,
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0092 Printed in Great Britain
www.graphpad.com) and MedCalc Statistical Software

version 12.7.7 (MedCalc Software bvba, Ostend, Belgium;

http://www.medcalc.org) were utilized. The accuracy of

each of the MAAAs was compared using ROC curve

analyses (continuous variables). The sensitivity, speci-

ficity, and the area under the curve (AUC) were calculated

(MedCalc Software bvba) (Hanley & McNeil 1982) for AUC

comparison and derivation of the Z-statistic (Hanley &

McNeil 1983) (MedCalc Software bvba).
Results

Assessment of circulating NETest genes expression

in NET tumor tissue

To confirm the 51 marker gene blood panel captured NET

genes, we examined gene expression in two publically

available datasets (Kidd et al. 2007, Leja et al. 2009). All 51

genes were identified. Forty-five (92%) were elevated in NETs

compared to normal mucosa at a transcriptome level

(Fig. 1A). A second group of pathologically verified GEP–NET

samples (nZ22) examined by qRT-PCR identified 50 of 51

genes (98%) to be elevated in NETs compared to normal

mucosa (Fig. 1B). Examination of normal tissue (nZ8)

demonstrated all to score between 0 and 2, thus none were

classified as NETs (Modlin et al. 2013a, 2014a,b; Table 3).

Twenty-two (100%) of the pathologically verified tumor

samples exhibited scores O2 and were classified as NETs per

protocol (Modlin et al. 2013a, 2014a,b; Table 3). A sub-

analysis of different organ sites identified that the NET score

accurately (100%) classified samples from the stomach (1/1:

activity:80%),pancreas (4/4:55G3%), small intestine (10/10:

52G6%), appendix (1/1: 47%), and rectum (6/6: 58G3%).
Correlation between circulating and tissue NETest genes

Pre-surgical blood samples were available for nine of the

22 pathologically verified tumor tissue samples (staging

included: I (nZ1), II (nZ3), and IV (nZ5). Seven control

blood (non-NET) and matched normal mucosa were also

available. Comparison analysis identified that the blood

NET scores closely correlated (two-tailed non-parametric

correlation analysis Spearman), rZ0.804, PZ0.0004 with

tumor tissue samples. In addition, the accuracy, i.e. the

ability of the scores to classify a sample as either ‘normal’ or

‘tumor’ for matched tissue and blood samples, was 100%

(Fig. 2A). An assessment of each of the 51 marker genes

individually identified significant expression correlation in

tumor tissue and blood respectively. Representative

samples from stomach, pancreas, small intestine and
Published by Bioscientifica Ltd.
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Figure 1

Marker gene expression in tissues. (A) Fold changes (FC) of differentially

expressed genes in neuroendocrine tumors compared to normal mucosa

for each of the two sample transcriptome sets. Differentially expressed

genes have a FC O1. Forty-seven of the 51 genes were upregulated at a

transcriptome level (P!0.05). (B) FC of differentially expressed genes in

NETs (nZ22) compared to normal mucosa (nZ8). Differentially expressed

genes have a FC O1. Fifty of the 51 genes were determined to be

upregulated at a transcriptional level. MeanGS.E.M.
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rectum are included (linear regression analysis (Pearson),

goodness of fit R2Z0.09–0.26, PZ0.002–0.04; Fig. 2B).
Table 3 NETest scores in tissue samples

Score (0–8) Classification

Concordance with

histopathology

(%)

Normal mucosa
(nZ8)

0.625G0.26 8/8 ‘normal’ 100

NETs (nZ22) 4.42G0.23 22/22 ‘tumor’ 100
Derivation and tissue expression of the NET ‘hallmarks’

Thirty of the 51 genes (58%) could be classified into nine

‘hallmarks’ or GC (Table 4). Clusters were based on a

combination of classical descriptors (Hanahan &

Weinberg 2000, 2011) as well as the protein: protein

interactome network (Franceschini et al. 2013, Kidd et al.

2014). A heat map analysis of each of the clusters or ‘omes’

identified expression was higher in NETs than in normal

mucosa (Fig. 3A). Expression in 22 NETs when compared

to normal mucosa (nZ8) identified that seven of the
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0092 Printed in Great Britain
clusters were specific to NETs (Fig. 3B, *P!0.01, **P!0.05

Mann–Whitney U test, two tailed). Fold change analysis

(Mann–Whitney U test, two tailed) identified significant

increases in seven clusters. One cluster, the ‘plurome’, was

significantly reduced in tumor tissue compared to normal

mucosa, while the proliferome was similar between NETs

and normal tissue (Fig. 3C).
Correlation of NET ‘Hallmarks’ between tumor tissue

and blood

We next examined ‘omes’ in the nine matched tumor and

blood samples to examine correlation. No significant

differences were noted between clusters in tissue and

blood (PZ0.11, Wilcoxon matched-pairs signed rank test,

rs (Spearman effectiveness of pairing): 0.41, PZ0.0026

(one-tailed)). Individual ‘omes’ were higher in blood than

tissue except for the secretome (Fig. 4A). No significant

differences were noted between each of the individual

‘omes’ in blood and tissue (PZ0.1–0.9; Wilcoxon matched-

pairs signed rank test).
Clinical utility of clustered gene expression

Thereafter, we assessed the expression of each of the ‘omes’

in peripheral blood samples to examine whether expression

levels were related to clinically defined SD or PD as

determined by best clinical judgment and/or imaging data.

In the test set (initially used to develop the NET score

(Modlin et al. 2013a; nZ130: controls: nZ67, NETs: nZ63

(SD: nZ35 and PD: nZ28)), significant differences were

noted in ‘omes’. Non-parametric testing (Kruskal–Wallis)

identified that eight of the ‘omes’ differed (PZ0.01–

P!0.0001, Kruskal–Wallis statistic: 9.1–51.7 (Table 5). The

metabolome was not identified to be different in this

analysis (PZ0.43). Multiple testing with adjustments

(Dunn’s multiple testing comparison) identified where SD

or PD were significantly different and when they differed to

controls. Data are included in Fig. 4B. These data demon-

strate that GC not only differentiate SD and PD from

controls but segregate the two clinical groups of SD and PD.
Published by Bioscientifica Ltd.
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Figure 2

Correlation between marker gene expression in tissue and in peripheral

blood. (A) Linear regression analysis of NET scores from matched tissue and

blood samples demonstrating the scores (scale 0–8) were highly correlated

(Spearman rZ0.804, PZ0.0004 (two-tailed)). All normal samples had NET

scores !2, all matched tumors had NET scores O2. (B) Correlation between

each of the 51 marker genes in matched tumor tissue and circulating blood.

Gene expression was log transformed. R2 values (linear regression, Pearson:

goodness of fit) ranged from 0.09 (pancreatic, P!0.04) to 0.29

(small intestine, P!0.002).

Table 4 Hallmarks of NETs

Proliferome Ki67, NAP1L1, NOL3, TECPR2
Growth factor signalome ARAF1, BRAF, KRAS, RAF1
Metabolome ATP6V1H, OAZ2, PANK2, PLD3
Secretome I (general) PNMA2, VMAT2
Secretome II (progressive) PQB1, TPH1
Epigenome MORF4L2, NAP1L1, PQB1, RNF41,

RSF1, SMARCD3, ZFHX3
Apoptome BNIP3L, WDFY3
Plurome COMMD9
SSTRome SSTR1, SSTR3, SSTR4, SSTR5
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We next examined cluster gene results in the indepen-

dent set (nZ159: including SD: nZ111 and PD: nZ48),

evaluating each of the clusters in SD vs PD. In this set, the

SSTRome, proliferome, secretome (II), plurome, and
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0092 Printed in Great Britain
epigenome were significantly increased (P!0.05, Mann–

Whitney U test) in PD compared to SD (Fig. 4C). Receiver

operator curve analysis of the combined dataset (test and

independent sets) identified that the AUC for differentiat-

ing SD (nZ146) from PD (nZ75) was significant for seven

of the omes (AUC: 0.65–0.72, P!0.0002, Table 5). This was

not significant for the growth factor signalome or the

general secretome. These data confirm that GC expression

can be used to differentiate between SD and PD.
Cluster analysis integration into the blood

multianalyte algorithm

We examined the NET scores (0–8) of the complete patient

group (test setCindependent set: nZ222; excluding

controls) in SD vs PD. In the SD group (nZ146), the

highest frequency score was 4 (30%, Fig. 5A), while 46%

of PD group (nZ75) had a score of 8 (Fig. 5A). A risk

probability assessment identified that NET scores ranging

from 0 to 5 were associated with SD with a R90% certainty

(Fig. 5B). A score of 8 was considered as PD (O90%).

However, scores of 6 and 7 could not accurately

differentiate SD vs PD. We next examined whether

individual ‘omes’ could differentiate between SD and PD.

ROC analyses identified that the AUC’s ranged from 0.514

(secretome I) to 0.72 (plurome) (Table 4 and Fig. 5C).

The omes (nZ6) that were significantly increased

(P%0.002) in PD compared to SD were then included in an

activity algorithm (omes were summated into a single

score). The ‘apoptome’ was excluded since it was decreased

compared to control blood (Fig. 4B). The resultant activity

algorithm was tested in the combined set and noted

to have an AUC of 0.81G0.03 (95% CI: 0.753–0.861),

P!0.0001 (Fig. 5D) for differentiating between PD and SD.

The clinical utility of this algorithmic reconfiguration

was then assessed by re-evaluating the original MAAA

derived 0–8 score. We weighted the 0 to 8 score by whether

the sample was called SD or PD by the algorithm.
Published by Bioscientifica Ltd.
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Figure 3

Gene expression classified by ‘ome’ in neuroendocrine tumors and normal

mucosa. (A) Heatmap of ‘omes’ in normal (N1–N8) mucosa and in NETs

(T1–T22). Each of the columns are normalized to a mean of 0 and a variance

of 1. Expression levels are plotted between K2 and 5. NETs express higher

levels of the omes. (B) Cluster assessment in normal mucosa (blue) and NETs

(red). Expression of the signalome, metabolome, secretome (I) and (II),

epigenome, apoptome and SSTRome were significantly elevated

(Mann–Whitney U test) in NETs. Genes in the plurome were decreased in

NETs. Values are included in individual scatter dot plots for each ‘ome’ (data

is presented logarithmically, meanGS.E.M.). *P!0.01, **P!0.05 vs normal

mucosa. (C) Fold changes (FC) of the ‘omes’ in NETs (nZ22) compared to

normal mucosa (nZ8). Differentially expressed genes have a FC O1. All

‘omes’ except for the plurome were O1. Data is presented logarithmically,

meanGS.D.
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This allowed the development of a 0–100% activity score

that incorporated both the machine-learning derived 0–8

score with the additional information regarding disease

activity (as captured in the ‘ome’ algorithm; Fig. 6A). The

distribution of activity scores is included in Fig. 6B. PD

samples had significantly higher activity scores than

SD samples (83.7G24.4% vs 34.1G27%, P!0.0001). The

upper 95% CI for SD was 45% indicating this could be used

as a cut-off to differentiate PD from SD. Using this value
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0092 Printed in Great Britain
(45%), the accuracy was 87.4% for predicting disease

status as stable or progressive. The metrics for this,

undertaken in the same set (nZ222), were sensitivity:

91.1%, specificity: 85.3%, positive predictive value: 77.4%,

and negative predictive value: 94.6% (Fig. 6C). ROC

analysis demonstrated an AUC of 0.92G0.02 (95%CI:

0.88–0.96), P!0.0001. A comparison between the CIA

NETest (0–100%) and the NET score (0–8) demonstrated

the former to be significantly more informative, i.e. the
Published by Bioscientifica Ltd.

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-15-0092
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Figure 4

Correlation between marker gene expression as a cluster ‘ome’ in tumor

tissue and in peripheral blood in three different sets. (A) Gene cluster (GC)

expression (individual ‘omes’) in tumor tissue was not significantly different

to that in blood (PZ0.11). (B) GC expression (individual ‘omes’) in control

blood (green: nZ67), in stable disease (SD: nZ35) and in progressive/active

disease (nZ28). Significant differences were noted for NETs compared to

control blood for the apoptome, epigenome, secretome (I and II),

proliferome and SSTRome. SD had higher metabolome and signalome

representation while PD had higher plurome expression. MeanGS.E.M.

*P!0.05 vs controls, #P!0.05 vs control and SD, &P!0.05 vs PD, and
@P!0.05 vs control (Mann–Whitney U test, two-tailed). (C) Each of the nine

GC ‘omes’ in the independent set of NETs (nZ159). PD was signified by

elevated SSTrome, proliferome, secretome (II), plurome and epigenome

activities. MeanGS.E.M. *P!0.05 vs SD.
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difference between AUC: 0.04G0.013, Z-statisticZ3.139,

PZ0.00017 (Fig. 6D). Of particular note was that the

higher NET scores (6–7), which previously could not

accurately differentiate SD vs PD could now be accurately

differentiated (93%) by the activity-based index.
Discussion

It is clear that monoanalyte biomarkers such as chromo-

granin A have significant limitations in the diagnosis and

management of NETs (Marotta et al. 2012). Having

developed an effective multianalyte strategy for NET disease
Table 5 Gene clusters, clinical outcome, and ROC-derived informa

Cluster name

Test set (nZ130)

Kruskal–Wallisb Con vs SDc Con vs

Proliferome P!0.0001, 51.7 P!0.0001 P!0.
Growth factor signalome PZ0.0055, 10.4 PZ0.017 NS
Metabolome PZ0.43, 1.7 NS NS
Secretome I (general) P!0.0001, 54.1 P!0.0001 P!0.
Secretome II (progressive) P!0.0001, 22.7 P!0.0001 PZ0.
Epigenome P!0.0001, 51.8 P!0.0001 P!0.
Apoptome PZ0.011, 9.1 PZ0.02 PZ0.
Plurome P!0.0001, 33.96 NS PZ0.
SSTRome P!0.0001, 34.0 PZ0.0078 P!0.

AUC, area under the curve; NS, not significant.
aReceiver operator curve analysis to differentiate SD from PD in the combined
(nZ27 (test) and nZ48 (independent)).
bKruskal–Wallis test including P value and the KW statistic.
cDunn’s multiple comparison test (a!0.05). Multiplicity adjusted P values are r

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0092 Printed in Great Britain
diagnosis, we sought to amplify the utility of this diagnostic

by incorporating tumor-derived biological and gene net-

work information. Our current investigations assess

whether measurements of circulating transcripts directly

correlated with tumor tissue expression levels and whether

this ‘liquid’ biopsy could yield further information about

the biological map (‘hallmarks’) of the tumor. Ultimately,

we sought to demonstrate that a CIA blood measurement

would be able to identify and differentiate clinically SD from

PD. Our results demonstrated that circulating transcripts

detectable in blood were expressed in and significantly

correlated with tumor tissue irrespective of the origin. While
tion from the different ‘omes’ for differentiating SD from PD

Combined sets (testCindependent)a

PDc SD vs PDc AUC 95% CI P value

0001 NS 0.698G0.035 0.629–0.767 !0.0001
PZ0.012 0.574G0.04 0.496–0.652 0.07
NS 0.652G0.04 0.573–0.730 0.0002

0001 NS 0.514G0.041 0.434–0.594 0.73
08 NS 0.655G0.037 0.583–0.727 0.0002
0001 NS 0.721G0.039 0.644–0.797 !0.0001
09 NS 0.70G0.034 0.636–0.771 !0.0001
0004 PZ0.0035 0.654G0.038 0.580–0.729 0.0002
0001 PZ0.03 0.683G0.038 0.610–0.759 !0.0001

sets, i.e., SD: nZ146 (nZ35 (test) and nZ111 (independent)) vs PD: nZ75

eported.

Published by Bioscientifica Ltd.
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Assessment of NET score and ‘omes’ in peripheral blood. (A and B)

Frequency distribution for the 0–8 score in stable disease and in progressive

disease (PD) in the combined sets (A) and risk probability analysis for a score

being either stable or progressive (B). Scores of 6–7 correlate poorly with

disease. (C) ROC curves for each of the ‘omes’ for differentiating between

SD and PD in the combined sets. These ranged from AUC of 0.51 (secretome

(I)) to 0.72 (plurome). Individual ‘omes’ are identifiable by different colors.

(D) Efficacy of a combined score (including SSTRome, proliferome,

epigenome, metabolome, secretome (II), and plurome). The AUC for

differentiating SD from PD was 0.81, P!0.0001.
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the number of tumor samples from individual sites was

limited, the distribution is broadly representative of the

populations typically seen in clinical practice. Biologically

relevant hallmarks (GC/omes) were also identified and

shown to have concordance between blood and tumor

tissue. The integration of this information with the original

MAAA (NET score 0–8) enabled the development of a more
A

NET tissue transcriptomes
n=21

NET blood transcriptomes
n=32

Literature-curated
n=22

Validated circulating NET biomarkers
n=51

Four algorithm analysis
majority vote

NET score
0–8 scale

NETest
0–100% scale

Cluster algorithm
six disease activity ‘omes’

Derivation of ‘omes’
summated gene expression

Figure 6

Development and assessment of disease activity NET score – the NETest – in

stable disease and progressive disease (PD) in peripheral blood (combined

data set: nZ222). (A) Graphic demonstrating the development of the NET

score and cluster identification with the resultant NETest and 0–100 scale of

disease activity. (B) Distribution (box and whisker – minimum to maximum,

medians) of the NETest (combination of NET score and cluster information)

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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sophisticated tool, a disease activity scale (0–100%) called

the NETest. This numeric exhibits a high sensitivity and

specificity (91 and 85% respectively) for delineating

GEP–NET disease activity. The demonstration that this

signature is also applicable to bronchopulmonary NETs,

suggests its likely utility in the evaluation of these tumors

but this requires further evaluation.
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The use of PCR to determine transcript alterations, e.g.

gene fusions in acute myeloid leukemia 1 (AML1)/ETO or

BCR-ABL in peripheral blood, is now a standard approach in

hematological cancers (Oehler & Radich 2006, Zhang et al.

2014). Similar methodologies are evolving for solid tumors,

e.g. MACC1 in gastric cancers (Burock et al. 2015) or a panel

of prostate cancer-associated genes in prostate cancer

(Danila et al. 2014). Hematological cancer measurements

clearly reflect a pathobiological process as expression of

fusion transcript levels correlate well (R2Zw0.5) between

bone marrow and blood (Ostergaard et al. 2004). However, it

is unclear whether measurements of solid tumor-associated

transcripts reflect actual carcinoma tissue expression or

capture other aspects of tumor biology, e.g. gene expression

from non-tumor cells in the tumor microenvironment. We

specifically assessed the 51 marker gene expression in NET

tumor tissue and identified that levels were elevated in 22

tumors from different GEP sites compared to macroscopi-

cally normal mucosa. Ninety-eight percent of transcripts

exhibited elevated expression in the tumor samples identi-

fying that transcripts were neuroendocrine-selective. Fur-

thermore, expression of the 51 transcripts could be detected

and measured in circulating blood and expression levels

exhibited a significant correlation (RZw0.3, P!0.05) with

tissue levels irrespective of the origin demonstrating this

was a pan-NET signature. Importantly, the NET-derived

score in blood was well-correlated (Spearman rO0.8,

P!0.0005) with tissue. Furthermore, it was completely

accurate (100% samples correctly called as either tumor or

normal). These results confirm that circulating transcripts

detectable in blood are also expressed in and correlate

significantly with GEP–NET tissue expression levels.

We next focused on the ‘hallmarks’ of NETs. The

complexity of cancer has been reduced to a defined number

ofunderlyingprinciples (Hanahan & Weinberg 2000) which

have been recently updated (Hanahan & Weinberg 2011).

This approach has been transposed to NET disease

(Walenkamp et al. 2014). Using networking analysis, cancer

hallmarks can be signified by molecular networks which

have the advantage of allowing quantification and compu-

tational modeling (Wang et al. 2014). These networks

interact with each other during cancer cell evolution and

may thus beconsidered todefine or regulate the evolution of

a tumor. Interrogationof such interactionscanbequantified

and then computationally modeled to predict cancer

evolutionary paths and clinical phenotypes. Using this

strategy, network operational signatures have been pro-

posed to compute and model the measures of hallmark traits

and this systems biology approach identified nine networks

(Wang et al. 2014). We applied this stratagem to assess the
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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51 NET marker genes. Our literature-curated analysis and

unbiased protein:protein interactome approach which

includes information from all neoplasia identified that

thirty of the 51 genes (58%) could be classified into nine

hallmarks or GC network signatures (Table 3). The

remainder were not categorized as cancer-relevant hall-

marks based on our current understanding of neoplasia.

Some of these genes have been identified in NETs, e.g. Ki67

and nucleosome assembly protein-like 1 (NAP1L1) as

markers of proliferation (Kidd et al. 2006, Rindi &

Wiedenmann 2011) and mechanistically linked to the

epigenome (Schimmack et al. 2014). Growth factor

expression and signaling is a well-known regulator of

NET proliferation (Kidd et al. 2005) and signaling pathways

(e.g. the RAS/RAF/MAPK signaling pathway) is typically

activated (Perren et al. 2004, Tannapfel et al. 2005)

while expression of the BRAF activator Rap1 as well as

B-Raf itself can be detected by immunohistochemistry

(75%) (Karhoff et al. 2007). Other examples include

secretion, e.g. PNMA2 as well as somatostatin receptor

expression, both of which have been described in NETs

(Reubi et al. 2001, Cui et al. 2010).

Initially, we assessed whether the hallmarks or ‘omes’

exhibited an elevated expression in NET tissue and

identified that seven were elevated compared to normal

mucosa, with one significantly reduced in tumor tissue

compared to normal mucosa (the ‘plurome’). We inter-

preted this observation as evidence that the cancer net-

work-based signatures were selective for NETs compared

to normal mucosa, which has been defined as a dynamic,

well-regulated tissue with active regulated turnover (Gracz

& Magness 2014). Of clinical relevance, however, was the

observation that no significant differences were noted

between cluster analysis in matched tissue and blood

(PZ0.11) although individual ‘omes’ were generally higher

in blood than tissue except for genes involved in secretion

(secretome). Differences in transcript expression between

tissue and blood are not unusual and have previously been

noted in bone marrow diseases where expression levels of

certain fusion genes can be three to five times higher in the

circulation than in marrow while others may be one to two

times lower (Ostergaard et al. 2004). While the mechanism

behind these differences is unknown, the higher levels we

noted in the circulation were not significantly different to

that measured in tumor tissue.

Having determined that the genes could be classified

into a cancer network and using the premise that disease

activity is linked to cluster expression, we next sought to

identify whether GC expression/omes could define clini-

cal disease. We therefore examined the question of
Published by Bioscientifica Ltd.
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whether disease categorized as clinically stable could be

differentiated from active, PD by GC/ome expression.

The NET specificity of the ‘omic’ expression was indicated

by the elevated expression of the majority, e.g. prolifer-

ome, signaling and SSTRome in NETs compared to control

blood in the test set. Furthermore, in an independent set

(nZ159), the SSTRome, proliferome, secretome, plurome,

and epigenome were all significantly increased (P!0.05)

in the PD (Fig. 4C). These observations were consistent

with our hypothesis that a circulating gene signature

captures biologically relevant data that would correlate

with clinical and imaging-based assessment of NETs.

Measurements of individual ‘omes’ were individually

informative with AUC’s ranging from 0.514 (secretome I)

to 0.72 (plurome). However, when mathematically

combined as a group (into an activity algorithm), the

information was highly informative with an AUC of 0.81

for differentiating between PD and clinically SD.

In previous reports, we have detailed the development

of a highly accurate diagnostic test for NETs (sensitivity

and specificity: 98 and 97% respectively; Modlin et al.

2013a, 2014a,b,c,d) based on a 0–8 score derived from four

different prediction algorithms. This investigation sought

to evaluate whether the inclusion of the informative

clusters (biological data) would amplify the diagnostic

potential and provide a predictive component to the

assessment of disease activity. To accomplish this, we

adopted a weighted approach, similar to that successfully

used for measuring/predicting prognosis in non-small cell

lung cancer (a five gene and protein signature; Kadara

et al. 2011). In our approach, we weighted the 0–8 score by

whether the GC activity algorithm identified the sample

as ‘active’ and therefore ‘progressive’ or exhibited a low

activity gain and was clinically stable. We expressed this

coefficient of activity as a 0–100 score for which the

discriminant index was significantly more effective at

segregating the two clinical phenotypes. Adoption of this

mathematical strategy provided an AUC of 0.92, with CIA

NETest metrics of sensitivity: 91.1%, specificity: 85.3%,

positive predictive value: 77.4%, and negative predictive

value: 94.6%. This was significantly more accurate than

use of the 0–8 score alone (Z value: 3.1, P!0.002) and

efficiently differentiated individuals with indeterminate

scores of 6 and 7 into high probability (93%) SD or PD.

We developed an accurate blood-based multianalyte

transcript diagnostic tool for NETs and now report further

refinement by inclusion of ‘omic’ expression cluster analysis

from NET-derived cancer networks. Integration of cluster

analysisprovidesa significantlymoreeffectivemethodology

to facilitate a real-time predictive assessment of NET disease
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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status. In most patients, grading and classification of tumor

type is based upon one-time assessment of the primary

lesion. This also provides a resource todetermine the genetic

basis of the disease which may impact treatment as well as

behavior. Somatic mutations in genes including MEN1,

ATRX, DAXX as well as in mTOR signaling (Leotlela et al.

2003) and in the zinc finger YY1 (Cao et al. 2013) have been

identified in pancreatic NETs while inactivation of CDKN1B

(P27KIP1) has been noted in small intestinal NETs (Francis

et al. 2013). ATRX and DAXX are associated with a reduced

time of relapse-free survival and a decrease in survival

(Marinoni et al. 2014) while mutations in YY1 are associated

with a later onset of tumors (Cao et al. 2013). CDKN1B loss

is associated with a decreased survival and reported as an

independent factor in poor overall survival (Kim et al. 2014).

Protein:protein interactome analyses demonstrate that

mutations in these genes that characterize the genetic

basis of NET disease can be captured by the circulating

signature. The pancreas-restricted mutations are all linked

to chromatin remodeling (‘epigenome’) while MEN1 and

CDKN1B are involved in growth factor signaling and

proliferation (‘signalome’ and ‘proliferome’). The somatic

SNVs identified in small intestinal NETs (Banck et al. 2013)

also include genes that impact the different NET ‘omes’

including FGFR2 (‘signalome’), EZH2 (‘signalome’ and

‘proliferome’) or actually comprise directly the signature

itself, e.g. BRAF. Therefore, the circulating NET signature has

the capacity toboth identify NET-specificgenetic alterations

as well as provide information relevant to targetable

signaling pathways, e.g. mTOR (‘signalome’). This blood-

based multianalyte strategy directly reflects tumor tissue

biological activity and provides accurate time-specific

information that reflects the status of evolving disease

(residualormetastases). It is likely that such informationwill

also reflect the efficacy of any therapeutic intervention and

thereby provide valuable clinical information to facilitate

management. The early identification of active, progressing

disease has obvious clinical implications. In those with

residual disease, the identification of increased disease

activity or diminished treatment efficacy is clinically of

considerable relevance to management. Similarly, clinicians

utilizing targeted therapies would benefit from quantifi-

cationofbiologically relevant ‘omes’, e.g.RAF/RAS signaling

or somatostatin receptor expression that provide assurance

of the presence of a relevant therapeutic target and

demonstration of efficacy. For example, PCR-based

molecular monitoring of AML has identified that a lack of

decline of transcript levels by less than two logs after

chemotherapy is a poor prognostic sign (Jaeger & Kainz

2003). In chronic myeloid leukemia, PCR-based tests that
Published by Bioscientifica Ltd.
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detect theBCR-ABL chimeric transcriptpredict relapse in the

transplant setting are a strong measure in predicting

progression-free survival in imantinib-treated patients

(Oehler & Radich 2006). Trials using the quantitative

assessment of BCR-ABL as a surrogate outcome marker will

examine if such strategies can reduce both the time and cost

of clinical trials (Oehler & Radich 2006).

We have demonstrated that gene expression,

measured in blood, reflected tissue expression, that

expression of genes in the NETest captured the biology

of NET neoplasia, and that integrating these measure-

ments of circulating gene expression could accurately

define clinical status. Based on these data, which indicate

that measurement of circulating gene expression is

clinically informative, we have built an algorithm – the

NETEst – that not only accurately diagnoses GEP–NETs but

also provides a measure of their biological activity.
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