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(NE) marker transcripts in the BON cell line and the absence 
of  Tph-2, DDC, TGF  �  R2,  and  M3  transcripts in KRJ-I. The KRJ-I 
cell line secreted serotonin (5-HT) in response to isoproter-
enol (EC 50  = 100 n M ), noradrenaline (EC 50  = 1.7 n M ), and pitu-
itary adenylate cyclase (PACAP, EC 50  = 0.03 n M ). Cholecysto-
kinin (IC 50  = 430 n M ), somatostatin (IC 50  = 400 n M ), acetylcho-
line (IC 50  = 3.7 n M ), and  � -aminobutyric acid A (GABA A , 
IC 50  = 2 n M ) all inhibited 5-HT release, while gastrin and 
bombesin had no effect. 5-HT secretion in the BON cell line 
was stimulated by isoproterenol (EC 50  = 900 n M ), noradrena-
line (EC 50  = 20 n M ), cholecystokinin (EC 50  = 130 n M ), PACAP 
(EC 50  = 0.12 n M ), bombesin (EC 50  = 15 n M ), and acetylcholine 
(EC 50  = 0.2 n M ). It was inhibited by somatostatin (IC 50  = 300 
n M ) but not GABA A . KRJ-I responded with proliferation to 
connective tissue growth factor (CTGF, EC 50  = 0.002 ng/ml), 
transforming growth factor- �  (TGF � , EC 50  = 0.63 ng/ml) and 
transforming growth factor- �  (TGF � , EC 50  = 0.63 ng/ml). Epi-
dermal growth factor (EGF) and somatostatin had no signif-
icant effect. BON cell proliferation was stimulated only by 
EGF and TGF �  (EC 50  = 15.8 and 10 ng/ml). TGF �  (IC 50  = 0.16 
ng/ml), MZ-4-147 (IC 50  = 0.5 n M ), and BIM23A761 (IC 50  = 0.06 
n M ) all inhibited proliferation. CTGF and somatostatin had 
no effect.  Conclusion:  KRJ-I and BON cell lines demonstrate 

 Key Words 

 Neuroendocrine tumors  �  Enterochromaffin cell  �  BON cell 
line  �  KRJ-I cell line 

 Abstract 

  Background:  Neuroendocrine tumors (NETs) of the gastro-
intestinal (GI) system are increasing in incidence with mini-
mal improvement in prognosis. Although the cell of origin 
has been identified as the enterochromaffin (EC) cell, its se-
cretory and proliferative regulation has not been defined at 
a mechanistic level. To date, the BON cell line has been the 
most widely used in vitro EC cell model despite its pancre-
atic origin. Using whole-genome mathematical analysis as 
well as secretory and proliferative studies, we compared the 
BON cell line to the small intestine (SI) EC cell-derived NET 
cell line, KRJ-I, to assess individual cell line validity and ap-
plicability for the investigation of GI-NET disease.  Methods 

and Results:  Principal component analysis and ANOVA of 
KRJ-I and BON transcriptomes (U133 Plus 2) identified sub-
stantially different ( ! 10%) overlap in transcripts with mini-
mal (R 2  = 0.24) correlation in gene expression profiles. RT-
PCR detected large variability ( 1 12%) in neuroendocrine 
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substantial differences in gene level transcripts, inconsistent 
receptor profile expression, wide variability in NE marker 
transcript levels, and significantly differential proliferative 
and secretory responses. Given the EC cell origin of KRJ-I, 
these results provide evidence that the BON cell line does 
not represent an EC cell system and is not a valid study mod-
el of (carcinoid) EC cell-derived NET. 

 Copyright © 2009 S. Karger AG, Basel 

 Background 

 The understanding of gastrointestinal (GI) neuroen-
docrine tumor (NET) pathobiology has been hampered 
by the paucity of information regarding their mecha-
nisms of secretion, proliferation, and metastasis. To a 
large extent this reflects the lack of animal models or cell 
lines for study  [1] . The small intestine (SI) and the ileum 
in particular are the most common GI-NET sites, com-
prising 21% of all NETs  [2] , while pancreatic NETs com-
prise about 1% and represent about 5% of NET incidence 
 [1, 3] . Due to their initial nonspecific presentation, small 
size and distant location, SI-NETs evade detection, and 
are often misconstrued as the menopause, irritable bow-
el syndrome, simple food allergies or anxiety syndrome 
 [4] . Consequently, diagnosis is delayed and the overall 5-
year survival for SI-NETs is 64%; a rate which has re-
mained virtually unchanged for the past 30 years  [5] .

  Although the origin of SI-NETs has been identified as 
the enterochromaffin (EC) cell, the molecular basis of its 
neoplasia remains unknown. EC cells are ubiquitously 
distributed within the mucosal crypts of the GI epitheli-
um, interspersed among other NE cells (enteroglucagon, 
neurotensin, somatostatin). The chief secretory product 
of the EC cell is serotonin (5-HT); however, substance P 
and guanylin have also been identified  [6, 7] . The charac-
terization of the receptor profile, transcriptome, and 
mechanistic basis of neoplastic EC cell function is critical 
to defining the molecular basis of SI-NET disease. The 
availability of such information is necessary to identify 
appropriate secretory and proliferative regulatory targets 
and facilitate the clinical management of this disease.

  Establishing an in vitro GI-NET model has proven dif-
ficult due to the limited availability of neoplastic tissue, 
contamination with normal bowel flora, slow prolifera-
tion period, and poor long-term survival rates of primary 
cell cultures. To date, four human cell lines of variable 
applicability, namely COLO320DM  [8] , GOT1  [9] , CND2 
 [10]  and BON  [11] , have been utilized as in vitro models 
considered to be representative of human GI carcinoids. 

COLO320DM was established from a moderately undif-
ferentiated adenocarcinoma of the sigmoid colon, GOT1 
and CND2 cell lines were harvested from a liver metas-
tasis associated with an ileal ‘carcinoid’ rather than a pri-
mary tumor. GOT1 is characterized by a slow doubling 
time (6–21 days) and is maintained as a mouse xenograft, 
whilst the CND2 cell line fails to express the principal NE 
marker chromogranin A and is most probably of NE car-
cinoma derivation.

  To date, the most widely used in vitro model of GI-
NETs has been BON. Previous studies have suggested the 
BON cell line to have characteristics of neoplastic EC 
cells  [12–17]  and it has been used as a model of physiolog-
ical regulation of 5-HT release and to study proliferative 
regulation  [12, 13, 18] . However, BON is an uncloned cell 
line with a heterogeneous cell population, derived from a 
peripancreatic lymph node metastasis of a pancreatic 
‘carcinoid’. It is likely to have acquired further genetic 
mutations in culture as a consequence of multiple pas-
sages and probably more accurately represents a pancre-
atic adenocarcinoid tumor rather than an EC cell NET 
per se  [19] . Furthermore, the BON cell has distinct limita-
tions as an appropriate GI-NET model since pancreatic 
NETs and GI-NETs are regarded as separate neoplastic 
entities  [20] . This is based upon a number of analyses in-
cluding: differentiation at a transcriptome level between 
the two tumor types  [21] , histological cell of origin, cyto-
genetic, mutational and SNP differences reflecting dif-
ferent etiologies and pathways of neoplastic development 
 [19, 22–24]  as well as distinctly different responses to che-
motherapy  [1, 25] . Based on this diverse array of evidence, 
the WHO categorized pancreatic and GI-NETs as two 
separate tumor entities  [26] . As there are no EC cells in 
the pancreas, it is likely that BON cells are derived from 
a pancreatic adenocarcinoma exhibiting NE cell differen-
tiation. The BON ‘NE’ phenotype can be reversed by 
Notch or alterations in transforming growth factor- �  
(TGF � ) and somatostatin  [27, 28]  signaling with a resul-
tant transition to a mesenchymal phenotype  [27] , a fea-
ture more typical of carcinomas  [29] .

  Recently, the human SI neoplastic EC cell line KRJ-I 
has been characterized  [30, 31]  and established as a mod-
el for the study of EC cell-derived NETs. KRJ-I is a con-
tinuous cell line, established from a primary multifocal 
ileal NET, with a doubling time of about 2 days, and dis-
plays classical morphological, immunohistochemical 
and biochemical features of an EC cell NET  [32] .

  The establishment of a reliable in vitro   model is neces-
sary to define the molecular basis of SI-NET disease and 
for the future delineation of rational diagnostic and ther-
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apeutic strategies. Thus, the identification of an appro-
priate neoplastic EC cell model is essential. The primary 
goal of this study was to evaluate the KRJ-I and BON cell 
lines. Our aims were to: (1) define KRJ-I and BON on a 
whole-genome level; (2) delineate their NE marker and 
receptor transcript expression; (3) characterize 5-HT se-
cretion, and (4) define KRJ-I and BON proliferative ef-
fects in response to growth factors [epidermal growth 
factor (EGF), transforming growth factor- �  (TGF � ), 
connective tissue growth factor (CTGF), TGF � ], and 
pharmacotherapeutic agents [somatostatin, the growth 
hormone releasing hormone (GHRH) receptor antago-
nist (MZ-4-147), and the selective dopamine receptor 2 
agonist (BIM23A761)].

  Materials and Methods 

 Culture Conditions 
 KRJ-I cells were cultured as floating aggregates at 37   °   C with 

5% CO 2 . KRJ-I cells were kept in Ham’s F12 medium (Gibco) con-
taining 10% fetal bovine serum (FBS) (Sigma-Aldrich, USA), pen-
icillin 100 U/ml and streptomycin (100  � g/ml)  [31, 32] . The adhe-
sive growing BON cells were cultured in DMEM:Ham’s F12 me-
dium in a 1:   1 ratio (Gibco, USA) supplemented with 10% FBS 
(Sigma-Aldrich) and antibiotics (100 U penicillin/ml + 100  � g 
streptomycin/ml, Sigma-Aldrich)  [32, 33] .

  GeneChip 
  RNA Extraction.  Total RNA was extracted from the KRJ-I 

(n = 2), BON (n = 2) cell lines and normal jejunum tissue (n = 2, 
GSE2109) using Trizol (Invitrogen, USA) followed by Qiagen 
RNeasy kit (Qiagen Inc., USA), and the RNA quality was assessed 
using Agilent Bioanalyzer (Agilent Technologies, Palo Alto, Ca-
lif., USA) to visually verify the absence of genomic DNA contam-
ination, integrity, and ratio of 28S and 18S bands. Only samples 
with an absorbance ratio at 260 and 280 nm (A 260 /A 280 ) 1.9 were 
used. 10  � g of total RNA were provided to the Keck Affymetrix 
facility where cRNA labeling, hybridization (U133A Plus 2.0 
GeneChip), and data analysis were performed as described previ-
ously  [34] .

   Hybridization.  The Affymetrix U133A Plus 2.0 array compris-
es about 54,000 probe sets and 1,300,000 distinct oligonucleotide 
features and can analyze the expression level of about 47,000 tran-
scripts and variants, including 38,500 well-characterized human 
genes (http://www.affymetrix.com/products/arrays/specific/
hgu133plus.affx). The hybridized arrays were scanned using a 
confocal laser fluorescence scanner (Agilent Microarray Scanner, 
Agilent Technologies). Arrays were scaled to an average intensity 
of 500 and analyzed independently using Microarray Suite (MAS) 
5.0 software (Affymetrix, Santa Clara, Calif., USA).

  Real-Time PCR 
 RNA was extracted from KRJ-I and BON cells (each 1  !  10 6 ) 

after 1, 5 and 7 days of   continuous culture using Trizol, and then 
cleaned using a Qiagen RNeasy kit in conjunction with the 

DNeasy Tissue kit ensuring absence of any contaminating ge-
nomic DNA. The clean RNA was converted to cDNA using the 
High Capacity cDNA Archive Kit (Applied Biosystems, USA). 
Transcript levels of neoplastic EC cell housekeeping genes  (ALG-
9, TFCP2, ZNF410)   [35]  ,  NE markers   [chromogranin A, trypto-
phan hydroxylase 1 and 2 (Tph-1, -2), dopa decarboxylase (DDC), 
substance P, guanylin, neuron-specific enolase (NSE), Ki67] ,  and 
receptors   [ � -1 adrenergic (ADBR1), muscarinic types 1–4 (M1–
4), somatostatin type 2 (sst2), transforming growth factor type 2 
(TGF � R2), LRP1] were measured in KRJ-1 and BON. Analysis 
was performed as described previously  [4]  using Assays-on-De-
mand products and the ABI 7900 Sequence Detection System ac-
cording to the manufacturer’s suggestions. All samples were ad-
justed to   20 ng/ � l cDNA before the experiments; 1  � l of template  
 cDNA was used per reaction. Cycling was performed   under stan-
dard conditions (TaqMan Universal PCR Master Mix protocol). 
The raw cycle threshold (C T ) values were exported, and data were 
normalized to  ALG-9, TFCP2, ZNF410  using GeNorm  [35, 36] .

  5-HT ELISA 
 5-HT secretion was measured using a commercially available 

5-HT ELISA (Rocky Mountain Diagnostics, USA) according to 
manufacturer’s instructions for serum samples. Prior to stimula-
tion experiments (all at concentrations of 10 –12  to 10 –6   M ), cells 
were transferred to serum-free medium, seeded in 96-well plates 
at a density of 5  !  10 4  cells/well (n = 4), and maintained at 37   °   C 
in 5% CO 2 . Basal 5-HT secretion from KRJ-I and BON cells was 
measured at 60 min and 24 h. Data for 5-HT secretion were nor-
malized to protein levels.

  The effects of noradrenaline, isoproterenol (selective  � -adren-
ergic receptor agonist), cholecystokinin, bombesin, pituitary ad-
enylate cyclase (PACAP)-38, and acetylcholine chloride (musca-
rinic ligand),  � -aminobutyric acid (GABA) and somatostatin on 
5-HT secretion were measured. The efficacy of acetylcholine 
chloride on 5-HT secretion was measured via preincubation (15 
min) with atropine to each cell line alone or in combination with 
acetylcholine chloride (EC 50  or IC 50 ).

  Proliferation Measurement 
 Effects of TGF � , TGF � , EGF, CTGF, somatostatin, BIM23A761 

(a chimeric somatostatin/dopamine agonist)  [37] , and MZ-4-147 
(GHRH antagonist)  [38]  were evaluated. Additionally, the effects 
of cholecystokinin and gastrin on proliferation were evaluated. 
The methylthiazolyldiphenyl tetrazolium (MTT) assay for mito-
chondrial enzymatic activity was used to quantify proliferative 
responses  [39] . Cells were seeded in 96-well plates at a density of 
5  !  10 4  cells/well. Growth medium (alone) was used as a control. 
Selected compounds (all 10 –12 –10 –6   M ) were added (n = 8 wells for 
each compound per concentration) and cells incubated for 72 h at 
37   °   C in 5% CO 2 . MTT was added (final concentration 0.5 mg/ml 
per well), and cells were incubated for a further 3 h at 37   °   C. The 
reaction was stopped by adding 0.01  N  acid-isopropanol and the 
formazan dye solubilized. The optical density was read at 595 nm 
using a microplate reader (Bio-Rad 3500, USA).

  Statistical Analyses 
 Raw GeneChip expression data were natural log (ln)-trans-

formed using Microsoft Excel (Redmond, Wash., USA). Analysis 
of variance (ANOVA) and principal component analysis (PCA) 
were performed using Partek �  Genomic Suit  [40] . For ANOVA,

D
ow

nl
oa

de
d 

by
: 

Y
al

e 
M

ed
ic

al
 L

ib
ra

ry
   

   
   

   
   

   
   

   
   

   
   

  
13

0.
13

2.
17

3.
22

5 
- 

11
/7

/2
01

3 
9:

13
:0

5 
P

M



  KRJ-I and BON Cell Lines as EC Cell 
NET Model  

Neuroendocrinology 2009;89:458–470 461

a two-class unpaired algorithm was implemented for normal je-
junum, BON, and KRJ-I cell lines. Geometric fold change (FC) 
was calculated as the ratio of geometric means. A p value  ̂  0.05 
and an absolute value of FC  6 2.0 were considered significant. 
PCA was used to describe the structure of high-dimensional data 
by reducing its dimensionality into uncorrelated principal com-
ponents (PCs) that explain most variation in the data  [41] . PCA 
mapping  was visualized in a 3-dimentional space where the x-, 
y-, and z-axis represent 1st, 2nd, and 3rd PCs, respectively. Dis-
persion matrix was computed using the covariance method. The 
variability in  � C T  was expressed as coefficient of variation (CV) 
and was defined as the ratio of standard deviation to the mean. 
EC 50 /IC 50  values were calculated from nonlinear regression anal-
ysis (PRISM 4, GraphPad Inc., USA).

  Results 

 Transcriptome Analysis 
 To delineate the gene level segregation of KRJ-I and 

BON cell lines, transcriptomes of each cell line were re-
duced to 3 PCs using the PCA technique. Transcriptomes 
of normal jejunum (GSE2109) were included for reference 
( fig. 1 a). 52.8% of variance was represented by the 1st PC, 
35.2% by the 2nd, and 7.8% by the 3rd; 95.8% of the vari-
ance was therefore captured by all 3 components. Dis-
tance of separation between clusters is indicative of de-
gree of similarity on a gene level; a greater distance is 
equivalent to reduced similarity.
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  Fig. 1.  Transcriptome analysis of KRJ-I, BON and normal jeju-
num.   PCA of KRJ-I (green), BON (red), and normal jejunum 
(blue) transcriptomes captured 52.8% of the variance by the 1st 
PC, 35.2% by the 2nd PC, and 7.8% by the 3rd PC. 95.8% of the 
variance was captured by all 3 PCs ( a ). A large distance of separa-
tion between samples is indicative of a greater measure of dis-
similarity on a whole-genome level between KRJ-I and BON cell 
lines. BON and KRJ-I transcriptomes were compared to normal 
jejunum using ANOVA ( b ). 6,496 and 151 significantly upregu-
lated genes (p  ̂   0.05, FC  6  2) were identified in BON and KRJ-
I, respectively. No genes were commonly upregulated in the two 
cell lines. 2,454 downregulated genes (p  ̂   0.05, FC  ̂   –2) were 
unique to the BON cell line and 2,614 downregulated genes were 
shared by BON and KRJ-I. KRJ-I did not contain any unique 
downregulated genes. Additionally, expressions of all differen-
tially expressed genes were found to be significantly different in 
two cell lines when compared in a pair-wise fashion (coefficient 
of linearity, R 2  = 0.24) ( c ). 
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  To assess the degree of gene expression differentiation 
between BON and KRJ-I, transcriptomes were compared 
to normal jejunum. 6,496 and 151 significantly upregu-
lated genes (p  ̂   0.05, FC  6 2) were identified in BON 
and KRJ-I, respectively. No genes were shared by the two 
cell lines ( fig. 1 b). Assessment of down-regulated genes 
identified 2,454 genes unique to the BON cell line and 
2,614 genes shared by BON and KRJ-I. KRJ-I did not con-
tain unique downregulated genes. Additionally, the ex-
pressions of all differentially expressed genes were found 
to be significantly different in the two cell lines when 
compared in a pair-wise fashion (coefficient of linearity, 
R 2  = 0.24) ( fig. 1 c).

  Variability in Transcript Expression 
 The transcript levels of neoplastic EC cell housekeep-

ing genes  (ALG9 ,  TFCP2  and  ZNF410)  were measured us-
ing real-time   PCR. The KRJ-I cell line was characterized 
by low CV values (CV  ̂  4.5%), while the BON cell line 
demonstrated CVs above 11.8% ( table 1 ).

  NE marker transcripts  CgA, NSE, Ki-67  and the EC 
cell-specific markers  Tph-1, substance P , and  guanylin  
were present in both KRJ-I and BON, while  Tph-2  and 
 DDC  were present only in BON ( table 1 ). Both cell lines 
showed variability in NE marker transcript expression. 
However, a wide variability in  guanylin  (KRJ-I 159%   vs. 
BON 100%) and  substance P  (BON 165% vs.   KRJ-I 21%) 
was noted.

   ADBR1, M1, M2, M4, sst2  and  LRP1  receptor tran-
scripts were identified in KRJ-I and BON. However,  TGF-
  �  R2  and  M3  were identified in BON only. Although vari-
ability in transcript expression was noted in both cell 
lines, the BON cell line was characterized by a greater 
variability in  ADBR2  (2-fold),  sst2  (5-fold),  M1  (4-fold), 
and  M2  (5-fold) compared to KRJ-I ( table 1 ).

  BON and KRJ-I 5-HT Secretory Profiles 
 Basal 5-HT Secretion 
 5-HT release during 60-min and 24-hour intervals 

was significantly lower (p  !  0.05) in BON (8.0  8  4.1 and 
16.7  8  8.2 ng/mg, respectively) than KRJ-I (14.3  8  1.6 
and 40.1  8  16.3 ng/mg, respectively) ( fig. 2 ).

  Secretory Agonists and Antagonists 
 The KRJ-I cell line secreted 5-HT in response to iso-

proterenol (EC 50  = 100 n M ), noradrenaline (EC 50  = 1.7 
n M ), and PACAP (EC 50  = 0.3 n M ). Secretion could be 
 inhibited by cholecystokinin (IC 50  = 430 n M ), somato-
statin (IC 50  = 400 n M ), acetylcholine (IC 50  = 3.7 n M ), and 
GABA A  (IC 50  = 2 n M ). Gastrin and bombesin had no ef-

Table 1. Variability in housekeeping genes, NE markers and re-
ceptor transcripts

Transcript KRJ-I, % BON, %

Housekeeping genes
ALG9 4.4 14.6
TFCP2 4.5 15.9
ZNF410 3.8 11.8

Neuroendocrine markers
CgA 58 88
Tph-1 100 65
Tph-2 N/A 85
NSE 38 32
DDC N/A 39
Substance P 21 165
Guanylin 159 100
Ki-67 38 14

Receptors
ADBR2 53 116
SST2 21 106
LRP1 96 125
TGF�R2 N/A 17
M1 47 154
M2 33 154
M3 N/A 84
M4 73 46

The variability in �CT was expressed as CV and was defined 
as the ratio of standard deviation to the mean.
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  Fig. 2.  Basal 5-HT secretion in KRJ-I and BON cell lines at 60 min 
and 24 h. After 60 min, 5-HT release in KRJ-I cell line was mea-
sured as 14.3  8  1.6 ng/mg normalized to protein, while in BON 
8.0  8  4.1 normalized to protein ( a ). After 24 h, KRJ-I secretion 
reached 40.1  8  16.3 normalized to protein and BON 5-HT se-
cretion reached 16.7  8  8.2 normalized to protein ( b ). During 
both intervals, BON 5-HT release was significantly lower than in 
 KRJ-I (n = 4,  *  p  !    0.05). 
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  Fig. 3.  5-HT secretion: candidate agonists and antagonists. KRJ-I 
cell line responded with secretion to isoproterenol (EC 50  = 100 
n M ), noradrenaline (EC 50  = 1.7 n M ), and PACAP (EC 50  = 0.3 n M ) 
(     a, b, e ). Secretion could be inhibited by cholecystokinin (IC 50  = 
430 n M ), somatostatin (IC 50  = 400 n M ), acetylcholine (IC 50  = 3.7 
n M ), and GABA A  (IC 50  = 2 n M ) (     c, g, h, i ). Gastrin and bombesin 
had no effect on 5-HT secretion in this cell line. 5-HT secretion 

in the BON cell line was stimulated by isoproterenol (EC 50  = 900 
n M ), noradrenaline (EC 50  = 20 n M ), cholecystokinin (EC 50  = 130 
n M ), PACAP (EC 50  = 0.12 n M ), bombesin (EC 50  = 15 n M ), and ace-
tylcholine (EC 50  = 0.2 n M ) ( a–c, e, f, h ). It was not significantly 
inhibited by gastrin or GABA but was by somatostatin (IC 50  = 300 
n M ) ( d, g, i ).       
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fect on 5-HT secretion in this cell line ( fig. 3 a–i). 5-HT 
secretion in the BON cell line was stimulated by iso-
proterenol (EC 50  = 900 n M ), noradrenaline (EC 50  = 20 
n M ), cholecystokinin (EC 50  = 130 n M ), PACAP (EC 50  = 
0.12 n M ), bombesin (EC 50  = 15 n M ), and acetylcholine 
(EC 50  = 0.2 n M ). It was inhibited by somatostatin (IC 50  = 
300 n M ). GABA had no effect ( fig. 3 a–i).

  To further define the effects of acetylcholine on 5-HT 
secretion in KRJ-I and BON cell lines and to determine if 
the effect could be reversed, cell lines were stimulated 
with acetylcholine, atropine, and acetylcholine + atro-
pine. 5-HT secretion in KRJ-I was inhibited by acetylcho-
line (IC 50  = 3.7 n M ). Atropine alone stimulated 5-HT re-
lease (EC 50  = 13 n M ) and acetylcholine + atropine re-
versed acetylcholine-mediated inhibition (EC 50  = 220 
n M ) ( fig. 4 a). In the BON cell line, acetylcholine activated 
5-HT secretion (EC 50  = 0.2 n M ). The effect could be re-
versed by both atropine alone and in combination with 
acetylcholine (IC 50  = 9.7 n M  and IC 50  = 1.1 n M,  respec-
tively) ( fig. 4 b). These results demonstrate very different 
muscarinic responses in the two cell lines: 5-HT secre-
tion from the pancreatic-derived BON is stimulated while 
the intestinal-derived KRJ-I is inhibited. This is consis-
tent with the substantially different regulatory mecha-
nism of a pancreatic-derived cell system  [42, 43] .

  BON and KRJ-I Proliferative Profiles 
 The KRJ-I cell line responded with proliferation to 

TGF �  (EC 50  = 0.63 ng/ml), TGF �  (EC 50  = 0.63 ng/ml), 
CTGF (EC 50  = 0.002 ng/ml), and the GHRH antagonist, 
MZ-4-147  (EC 50   =  63  n M )  ( fig.  5 b–d,  f).  Proliferation   

was marginally but not signficantly inhibited by the so-
matostatin/dopamine chimera  BIM23A761 (IC 50  = 3  !  
10 –3  n M ) ( fig. 5 g), while EGF and somatostatin had no 
significant effect. Proliferation of the BON cell line was 
stimulated only by TGF �  (EC 50  = 10 ng/ml) ( fig. 5 c). 
TGF �  (IC 50  = 0.16 ng/ml), MZ-4-147 (IC 50  = 0.5 n M ), and 
BIM23A761 (IC 50  = 0.06 n M ) inhibited proliferation 
( fig. 5 d, f, g). EGF, CTGF and somatostatin had no sig-
nificant effects.

  Finally, the effects of cholecystokinin and gastrin on 
KRJ-I and BON cell proliferation were measured. Chole-
cystokinin inhibited KRJ-I proliferation (IC 50  = 420 n M ) 
but stimulated BON proliferation (EC 50  = 130 n M ) ( fig. 6 a). 
Gastrin had no effect on either cell line ( fig. 6 b).

  Discussion 

 Molecular understanding of the EC cell-derived GI-
NETs has been substantially hampered by the lack of an 
appropriate human neoplastic EC cell model. The NCI 
summit conference noted that the lack of appropriate cell 
lines and animal models was a key issue contributing to 
the limited advances in the field of NE cell biology  [20] . 
In particular, there was no rapidly growing cell line or 
animal model suitable for the investigation of EC cell 
neoplasia, the commonest NE tumor. KRJ-I is the only 
validated rapidly dividing human EC cell NET model  [31, 
44] . However, to date, the BON cell line has been the most 
widely used NET cell line for investigation. The present 
study overall establishes that BON does not represent a 
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  Fig. 4.  Effects of acetylcholine, atropine, 
and acetylcholine + atro pine on 5-HT se-
cretion in KRJ-I and BON cell lines.                   5-HT 
secretion in KRJ-I was inhibited by acetyl-
choline (IC 50  = 3.7 n M ). Atropine alone 
stimulated 5-HT release (EC 50  = 13 n M ) 
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tylcholine inhibited secretion (EC 50  = 220 
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activated 5-HT secretion (EC 50  = 0.2 n M ). 
The effect could be reversed by atropine 
and acetylcholine + atropine (IC 50  = 9.7 
n M  and IC 50  = 1.1 n M,  respectively) (             b ).             
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statin had no effect. Proliferation of the BON cell line was stimu-
lated  by  EGF  and  TGF �   (EC 50    =   15.8   and   10   ng/ml,   respective-
ly) (   a,   c ). TGF �  (IC 50  = 0.16 ng/ml) and MZ-4-147 (IC 50  = 0.5 n M ) 
all inhibited proliferation ( d, f, g ). CTGF and somatostatin had 
no significant effect.       
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model of gut EC cell neoplasia: (1) BON and KRJ-I have 
substantially different transcriptome profiles; (2) tran-
script expressions of housekeeping genes, NE markers 
and receptors vary substantially over time in BON cell 
line compared to KRJ-I; (3) BON cell line has a differen-
tial 5-HT secretory profile exhibiting muscarinic-, chole-
cystokinin- and bombesin-mediated secretion and no 
GABAergic responses, and (4) the BON cell line and the 
EC cell-derived line, KRJ-I, respond differently to growth 
factors and proliferation inhibitors.

  KRJ-I cells share a number of characteristics with nor-
mal human SI EC cells including expression of chromo-
granin A, 5-HT, Tph-1, substance P and guanylin  [44] . As 
a neoplastic cell line, it exhibits predictable differences in 
proliferation (increased Ki-67 expression, rapid dou-
bling-time)  [31]  to naïve (nontransformed) human EC 
cells. The broad commonality of receptor expression and 
secretory responses to a variety of neural and luminal 
stimuli  [45]  shared by the normal EC cell support the 
conclusion that KRJ-I is a transformed EC cell. Whole-
genome analysis of BON and KRJ-I cell lines indicates 
that on a genomic level, the two are substantially different 
cell lines ( table 2 ). For reference purposes, normal jeju-
num tissue was used to compare gene signatures of KRJ-
I and BON cell lines and demonstrated that expression 
patterns were not reproducible and neoplastic transfor-
mation in each cell line may be associated with different 
alterations in gene expression. These differences may re-
flect the different tissue origins of each cell line but reca-
pitulate several studies demonstrating the nonoverlap-
ping nature of pancreatic NETs and GI-NET molecular 
alterations and transcriptomes  [19, 21, 23] .

  Housekeeping genes are constitutively expressed to 
maintain cellular function  [46] . As such, they should be 
resistant to regulative factors, and maintain constant 
RNA transcription. The housekeeping genes  ALG9 , 
 TFCP2  and  ZNF410  have previously been identified and 
characterized in the EC cell-derived KRJ-I cell line and 
their utility for transcriptional studies of GI-NETs has 
been validated  [35] . Although all 3 NE housekeeping 
transcripts were identified in BON, the high variability 
(10%) in expression when measured through 7 days of 
continuous culture highlights that this cell line does not 
conform to a GI-NET profile.

  Although both cell lines showed variability in NE 
marker transcripts over the 7-day period in culture, of 
note was the high variability in  substance P  and  guanylin  
transcript expressions. Substance P is a tachykinin in-
volved in GI motility, secretion, vascular permeability, 
and immune function  [47] . Although some substance P 

is produced by the EC cells, the major source of tachyki-
nins in the GI tract is the enteric nervous system, in which 
tachykinins are extensively colocalized with choline ace-
tyltransferase  [47] . In light of the diverse actions of sub-
stance P, the difference in transcript expression may rep-
resent a disparity in the functionality of substance P 
within BON and KRJ-I. With regard to KRJ-I, this may 
reflect the fact that this particular tumor is a 5-HT dom-
inant secretor since it is well recognized that individual 
SI-NETs exhibit different profiles of peptide and amine 
secretion  [1, 48] . Guanylin is a 15-amino-acid peptide 
that is secreted by the goblet cells in the colon. It is an in-
testinal modulator of water and electrolyte transport, and 
its augmented corelease with 5-HT may play a causal role 
in the symptomatic diarrhea experienced by GI-NET pa-
tients  [48, 49] . Increased  guanylin  transcript expression 

Table 2. Summary of differences between the EC cell-derived 
KRJ-I and the pancreatic BON cell line

Platform or agent KRJ-I BON

Transcriptome
U133A Plus 2 Array
(54,000 probes)

<10%, R2 = 0.24, p = NS

5-HT secretion
Isoproterenol, nM EC50: 100 EC50: 900
Noradrenaline, nM EC50: 1.7 EC50: 20
PACAP, nM EC50: 0.03 EC50: 0.12
Cholecystokinin, nM IC50: 400 EC50: 130 
Somatostatin, nM IC50: 400 IC50: 300 
Acetylcholine, nM IC50: 3.7 EC50: 0.2 
GABAA, nM IC50: 2 –
Gastrin – –
Bombesin, nM – EC50: 15 

Proliferation
CTGF, ng/ml EC50: 0.002 –
TGF�, ng/ml EC50: 0.63 EC50: 10 
EGF, ng/ml – EC50: 15.8
TGF�, ng/ml EC50: 0.63 IC50: 0.16
SST – –
MZ-4-147, nM – IC50: 0.5
BIM23A761, nM – IC50: 0.06

The two cell lines exhibit overlap in <10% of their transcrip-
tomes. Differences in receptor profiles or expression levels are 
reflected in very different efficacies in 5-HT secretory responses 
(�-adrenergic, cholecystokinin, gastrin-releasing peptide) or op-
posing effects (acetylcholine) on secretion. Proliferative respons-
es were similarly identified to be different, dependent on recep-
tor expression levels or signaling pathways. The absence of a
BIM23A761 response in KRJ-I reflects the absence of dopamine 2 
inhibitory receptors in this cell line.
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in the KRJ-I cell line after 7 days is thus consistent with 
the secretory profile of this lesion and reflected in the 
patient’s clinical presentation  [31, 32] . Of note, the  guany-
lin  transcript declined in the BON cell line after 7 days, 
highlighting the variability in the transcriptome of this 
cell line.

  Tryptophan hydroxylase (Tph) hydroxylates  L -trypto-
phan to 5-hydroxy- L -tryptophan and represents the rate-
limiting step in 5-HT synthesis, a key component of EC 
cell neoplasia  [50] . There are two isoforms: Tph-1 is prin-
cipally expressed in the periphery, and the recently iden-
tified Tph-2 which is exclusively expressed in neuronal 
cell types and is the predominant isoform in the central 
nervous system  [51] . DOPA decarboxylase is an enzyme 
implicated in synthesizing dopamine and 5-HT. Dopa-
mine is formed when DDC decarboxylates  L -dihydroxy-
phenylalanine ( L -DOPA) and 5-HT is formed when DDC 
decarboxylates 5-OH tryptophan  [52] . DDC has been 
demonstrated to be a marker for both tumors of NE and 
non-NE origin, including non-small cell lung and colorec-
tal carcinomas  [53, 54] .

  Regulation of 5-HT synthesis – a key EC cell determi-
nant – is provided by either the Tph-1 or Tph-2 enzyme 
isoform. The Tph-1 isoform is present in normal EC cells 
 [44] . Similary,  Tph-1  but not  Tph-2  or  DDC  transcripts 
were detectable in KRJ-I, demonstrating that 5-HT syn-
thesis is only regulated by the Tph-1 isoform, as in normal 
EC cells  [44] . In contrast, both  Tph-1  and  Tph-2  tran-
scripts as well as DDC are present in the BON cell system. 
Thus, 5-HT synthesis in this cell line does not occur 
through the classical Tph-1 pathway as it does in EC cells 
and EC cell neoplasia. In addition, the high variability 
(85% over a 7-day period in continuous culture) suggests 
that transcript expression for 5-HT synthesis in the BON 
cell line is unstable and fluctuates unpredictably during 
culture  [15] . These differences in synthesis were reflected 
in secretion studies. Thus, basal 5-HT secretion was sig-
nificantly higher (increased 2- to 3-fold) in KRJ-I than 
BON at both 60 min and 24 h. Midgut (EC cell) NETs 
usually secrete high levels of 5-HT in contrast to foregut 
NET which very rarely secrete 5-HT  [55, 56] . The lower 
and inconsistent levels of 5-HT secretion from the BON 
cell line therefore argue that this cell system has not only 
different mechanisms of synthesis but also a variable, 
non-EC cell phenotype.

  Defining functional receptors is important since not 
only do they define the mechanistic basis of an individu-
al cell’s function but they also provide potential diagnos-
tic and therapeutic targets. In KRJ-I, we noted ADBR1, 
M2/4, sst2 and LRP1 transcripts. The existence of these 

catecholaminergic and cholinergic pathways is consistent 
with the physiology of EC cells since they release 5-HT 
when stimulated via  � -adrenergic receptors and after va-
gal cholinergic stimulation  [57] . With the exception of 
the inhibitory  M4  receptor, the BON cell line demon-
strated a  1 2-fold variability in receptor transcript expres-
sions (ADBR1, M1–4, and sst2), suggesting that receptor 
expression in this cell line is not reproducible in culture. 
Additionally, the stimulatory  M3  and  TGF  �  R2  receptor 
transcripts were only expressed in BON, suggesting sub-
stantial differences in muscarinic control and TGF � -sig-
naling pathways between KRJ-I and BON cell lines.

  Isoproterenol, noradrenaline, and  PACAP stimulated 
5-HT release in both BON and KRJ-I cell lines, further 
supporting our proposal that neural regulation repre-
sents a common NE cell secretory mechanism ( table 2 ). 
Thus,  � - and  � -adrenergic receptors and PACAP recep-
tor stimulation appear to be potent activators of NE cell 
secretion in EC, ECL and G cells  [44, 58, 59] . However, 
cholecystokinin stimulated 5-HT release in BON, but not 
KRJ-I, a phenomenon consistent with the effect of chole-
cystokinin on pancreatic endocrine and acinar cell secre-
tion, e.g.  � -cells  [42, 43, 60] . In contrast, targeting the 
cholecystokinin-2 receptor with gastrin had no signifi-
cant effect on secretion in KRJ-I or BON. This is consis-
tent with previous studies identifying the lack of chole-
cystokinin-2  receptors in normal and neoplastic EC cells 
 [30]  and suggests that the provocative ‘pentagastrin’ test 
used to activate GI ‘carcinoid’ secretion probably occurs 
via an upstream, indirect, gastrin-initiated mechanism, 
rather than by gastrin itself. Of note was that bombesin 
and  gastrin-releasing peptide stimulated BON cell 5-HT 
secretion, consistent with the pancreatic origin of the tu-
mor  [61] . KRJ-I, however, did not respond to gastrin-re-
leasing peptide. Somatostatin inhibited 5-HT secretion 
in both BON and KRJ-I cell lines with similar efficacies 
(IC 50 : 300–400 n M ), but GABA A  inhibited only KRJ-I se-
cretion, confirming earlier results  [44] .

  Muscarinic receptor activation with acetylcholine 
chloride, however, had opposing effects, stimulating se-
cretion in BON (through M1/3 receptors) and inhibiting 
it in KRJ-I (through the predominant M2/4 receptors). 
These findings were confirmed by preincubating the cells 
with atropine, a competitive general antagonist for the 
muscarinic acetylcholine receptor, which reversed the 
effects of acetylcholine in both the BON and KRJ-I cell 
lines. These opposing responses are consistent with a 
cholinergic-stimulatory response characteristic of pan-
creatic endocrine/acinar cells, i.e. M3 receptor activation 
of insulin secretion from  � -cells  [42] . Intestinal EC cells, 
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in contrast, have inhibitory muscarinic receptors (M2/4) 
and respond to acetylcholine, as do KRJ-I cells, with in-
hibition of 5-HT secretion  [44] .

  Growth factors and their receptors are expressed in 
GI-NETs and the tumor matrix and are considered key 
regulators of the neoplastic EC cell phenotype  [62–65] . In 
particular, TGF �  and CTGF are considered regulators of 
SI-NET proliferation and its peri-tumoral and cardiac 
desmoplastic response  [65–67] . Similarly, activation of 
somatostatin receptors may inhibit tumor growth  [38, 
68] . Contradictory effects were noted to TGF � . Thus, 
BON cells responded with inhibition of proliferation 
consistent with expression of a functional TGF � R2 in-
hibitory pathway as previously noted in this cell line  [27, 
69] . In contrast, TGF �  stimulated KRJ-I proliferation, 
consistent with our previous observations of an altered-
TGF � -mediated regulatory pathway in SI-NETs  [65, 66] . 
Further differences in growth regulation were noted by 
the observation that CTGF, a proliferative and profibrot-
ic factor synthesized by GI-NETs  [67, 70] , stimulated 
KRJ-I but not BON cell proliferation. Fibrosis, identified 
in 40–60% of SI-NETs  [1] , is not a usual feature of pan-
creatic NETs. Proliferation in response to EGF and TGF �  
(growth factors that signal through the EGF receptor) 
was evident in BON cells. Of note is the observation that 
targeting the EGF receptor with gefitinib is only success-
ful in BON cells  [71]  but not KRJ-I  [31] . The different pro-
liferative responses to TGF � , CTGF and EGF lend fur-
ther support to the contention that BON is not a neoplas-
tic EC cell model.

  Although somatostatin had no significant inhibitory 
effect on proliferation, BIM23A761 (a selective dopamine 
receptor 2 agonist) inhibited BON cells as did MZ-4-147 
(a GHRH receptor antagonist), effects previously identi-
fied in foregut NETs (pituitary  [72]  and lung  [37] ). Sub-
stantially different proliferative mechanisms therefore 
govern KRJ-I and BON cell line proliferation.

  This study presents evidence that the BON and KRJ-I 
cell lines differ widely at a number of levels, including 
transcriptome, receptor expression and secretory and 
proliferative responses ( table 2 ). In particular, the mini-
mal relationship at a genetic level is strongly indicative 
that the BON cell line is neither EC cell nor intestinal in 
origin and the secretory and proliferative responses to 
cholecystokinin and secretory responses to bombesin 
and acetylcholine further indicate that BON represents a 
modified pancreatic endocrine cell  [73, 74] . The obvious 
similarities between KRJ-I and the normal EC cells in 
terms of receptor expression and secretory responses to a 
variety of neural and luminal stimuli as well as expres-

sion of common markers, e.g. Tph-1  [31, 45],  strongly sup-
port its EC cell derivation.

  The substantial differences identified between KRJ-I 
and BON strongly suggest the latter cell line is not an ap-
propriate in vitro model for EC cell-derived luminal GI-
NETs. Overall, it is evident that BON cells are likely de-
rived from a pancreatic adenocarcinoma exhibiting NE 
cell transformation and not representative of an intesti-
nal EC cell-derived tumor. Evidence for this is provided 
by studies with Notch  [28]  and the identification of a 
TGF � :somatostatin autoinhibitory pathway  [27] . Addi-
tion of Notch or alterations in TGF �  and somatostatin 
reverses the NE phenotype  [27, 28]  with a resultant tran-
sition to a mesenchymal phenotype  [27] . This recapitu-
lates the epithelial-to-mesenchymal transition noted in 
carcinomas  [29] , a feature not evident in NETs. Our con-
clusion is consistent with the consensus assessment of the 
National Cancer Institute NET Conference (Bethesda, 
Sept 23–25, 2007)  [20] . BON may be of use as a model of 
pancreatic NETs, tumors which have only a limited rela-
tion to luminal GI-NETs as has been noted in their clini-
cal, pathological and therapeutic response and behavior 
 [1, 21] . In contrast, KRJ-I is an EC cell model and focused 
investigation of this cell line will enable delineation of the 
mechanistic basis of EC cell neoplasia, as well as facilitate 
identification of appropriate molecular targets for diag-
nostic and therapeutic evaluation. 
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